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Molecular Electric Polarizabilities* 

II. Static Polarizabilities of Diatomic Molecules 
Using 2-~ Quality EFV GTO Basis Set 

Andrzej J. Sadlej 
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The electric field variant (EFV) Gaussian basis sets of double-zeta (2-r 
quality are used for the calculation of the electric dipole polarizabilities of 
diatomic molecules in the Hartree-Fock approximation. The explicit external 
electric field dependence of the GTO basis set, introduced according to the 
method described in Part I of this series, is shown to account for the major 
portion of the electric field induced deformation of the wavefunction. The 
polarizabilities obtained in the present calculations are quite close to the best 
Hartree-Fock results. The deviations from near-Hartree-Fock values amount 
to 3-8 per cent for the parallel component and to 10-15 per cent for the perpen- 
dicular one. It was also shown that the same method leads simultaneously to a 
considerable improvement of the dipole moments. 
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I. Introduction 

In recent years the calculation of fairly accurate SCF energies for small and 
medium size molecules became more or less a routine work [1]. It is also believed 
that for several qualitative studies, concerned primarily with molecular energies, 
using relatively small basis sets provides a reasonable compromise between the 
computational effort and the accuracy of the computed quantities I-2-4]. The 
progress in the SCF HF calculations for unperturbed systems has evidently 
stimulated an increasing interest in the possibility of perturbation calculation of 
the second- and higher-order molecular properties [5-9]. 

* This research was supported by the Institute of Low Temperatures and Structure Research of the 
Polish Academy of Sciences. 
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It is widely recognized that using the standard small or medium size basis sets is not 
sufficient even for the calculation of the first-order molecular electric properties 
[2-4, 10, 11]. A straightforward basis set extension [12], if not accompanied by 
the property-directed choice of orbital exponents [ 13] or their optimization [5, 6], 
does not lead to encouraging results [12]. Moreover, despite the progress in com- 
puter technology, large bases introduce rather severe limitations for the size of the 
considered systems. 

Recently, Werner and Meyer [13] have presented the results of very accurate 
polarizability calculations for a series of small molecules including the correlation 
effects. One has to be really impressed by the excellent quality of their results 
which was achieved mainly by the appropriate selection and, to some extent, 
optimization of the basis functions. However, the basis sets finally recommended 
by these authors make the list of molecules of a reasonable size rather short and in 
order to make the calculation of reliable molecular polarizabilities feasible for 
larger systems one has to look for much smaller bases. 

It was recognized long ago that even relatively small basis sets may properly 
represent the perturbation effects provided they explicitly depend on the external 
perturbation [14]. For instance, the variable, magnetic field dependent bases 
proved to be very useful in the calculation of molecular magnetic properties [9, 15]. 
A similar idea lies behind very efficient methods for the calculation of molecular 
forces and force constants [16-20]. For the external electric field perturbation 
Moccia [21] proposed to multiply each atomic or molecular orbital by a common 
field-dependent factor. However, Moccia's exploratory calculations of the helium 
atom polarizability did not lead to very encouraging results. Also more extensive 
calculations performed by Dodds [22] did not prove that Moccia's proposal 
sufficiently accounts for the perturbation effects. 

Recently, an alternative form of the explicit electric field dependence of the basis 
set functions was suggested [23]. These so-called electric field variant (EFV) basis 
sets have been constructed by using some inherent features of Gaussian functions 
following from the harmonic oscillator theory. The pilot numerical calculations 
for the hydrogen molecule [23] have shown a surprisingly high efficiency of the 
EFV GTO basis sets. These results seem to indicate a chance for a reliable calcula- 
tion of molecular electric polarizabilities using relatively small field-dependent 
bases. 

It seemed to be interesting to try the idea of EFV GTO's with one of standard, 
medium size Gaussian sets currently in use. For this purpose the basis set of Basch 
and Snyder [2] was selected and the electric dipole polarizabilities of a series of 
diatomic molecules were computed. It was also observed that the dipole moments 
computed using the EFV GTO's are considerably better than those calculated 
from the field-independent bases. 

The polarizability results reported in this paper correspond to the SCF HF 
approximation. Werner and Meyer estimated [13] the correlation contribution to 
molecular electric polarizabilities as usually less than 10 per cent. This important 
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conclusion seems to confirm the previous belief that the near-HF values would 
probably be adequate for qualitative purposes [5, 6]. 

2. Electric Field Variant (EFV) GTO's 

The computational convenience of  the Gaussian-type orbitals is obviously the 
most important aspect of  their usefulness in molecular calculations [24]. However, 
one can also exploit to some extent the fact that the GTO's are directly related to 
the solutions of  the harmonic oscillator problem. Since the exact solution of the 
electric field perturbed harmonic oscillator is known, this provides at least a general 
idea about the analytic form of  the perturbation dependence of  Gaussian basis sets. 

The harmonic oscillator embedded in the external static electric field F has the 
solutions of  the same analytic form as for the unperturbed problem but corre- 
sponding to the shifted equilibrium position. If k denotes the harmonic force con- 
stant and the oscillator is assumed to represent an oscillating electron with the 
charge - 1 a.u., then the equilibrium position shift for the external field applied 
along the #'th axis is given by 

Ar~(F~)= -6u~ F,= -(~u~ Fu (1) 
k 4~ 2 

where ~ = � 8 9  can be easily identified with the GTO exponent. 

It is quite obvious that one cannot treat each GTO of  the Gaussian basis set as a 
separate oscillator solution, completely neglecting other terms of the molecular 
Hamiltonian. To account for these differences and in order to make the field 
dependence of  the origin shift (1) more flexible, an additional parameter 2 was 
introduced [23]. It was proposed that for the external electric field F~, applied 
along the #' th positive direction, the original unperturbed GTO basis set {zi(r; ~i)} 
becomes field dependent, i.e., 

{zi(r;ai)} ' {zi(r'().u,F,, ai); ~i)} (2) 

for each GTO Xi, and 

F. 
g., (3) 

The parameter 2, was assumed to be the same for all GTO's in a given basis set and 
then determined variationally for each physically different direction of  the external 
field. Its directional properties reflect the fact that the degree of  incompleteness of 
a finite basis set from the point of  view of  a direction-dependent perturbation will 
not be, in general, isotropic [26]. 

1 The present paper is concerned with the electric field perturbation. However, a similar reasoning 
can also be used for several other perturbations [25J. Thus, the method outlined here has a rather 
general character and can be employed as a generator of variable bases for a number of important 
physical properties. 



208 A.J. Sadlej 

The proposed form of the external electric field dependence of GTO's completely 
agrees with a simple physical picture of the perturbation effects. The origin shift 
simply represents a field dependent polarization of a given orbital. The degree of 
this polarization will be large for outer orbitals (small GTO exponents) and 
negligibly small for the inner shell ones (very large exponents). As discussed 
previously [23], one can also rather safely assume that the field dependence of 
orbital exponents should be of minor importance. 

The properties of the field dependent GTO's can be also discussed in terms of their 
expansion into the following series 

z i (Fu)=)~i (O)+Fuz i ,  u(O ) 1 2 ,, ' +gr~ Xi, uu(0) + . . .  (4) 

and then Eq. (3) gives a plausible idea about the original basis set extension for the 
calculation of perturbed energies [27]. As shown by our pilot calculations for H2, 
this indirect extension of the original basis set properly accounts for the external 
electric field induced polarization of the electron density distribution [23]. 

Using the perturbation dependent basis sets makes necessary some extension of 
the standard perturbation methods [28-30]. For the calculation of lower order 
perturbed energies one can also use the so-called finite field perturbation methods 
[31-33]. The computational aspects and details of our calculations are discussed 
in the next section. 

3. Details of Numerical Calculations 

The perturbation theory at the SCF HF level leads to the so-called coupled 
Hartree-Fock (CHF) perturbation schemes [28-30]. As far as the considered 
molecular electronic state is non-degenerate virtually the same results follow from 
the numerical differentiation of the total SCF energy computed at several, pre- 
sumably small, values of the external perturbation strength. This numerical 
approach is usually referred to as the finite (field) perturbation method. Although 
this technique is obviously less elegant than the analytic CHF approach, it may be 
easier from the computational point of view [31-33]. However, using the finite 
perturbation techniques may result in rather difficult numerical problems because 
of the requirement of a very high precision of all intermediate calculations. Never- 
theless, computing the second-order perturbed energies appears to be rather 
feasible. 

A general density matrix formulation of the SCF perturbation theory for non- 
orthogonal, variable bases has recently been given by Dodds et al. [34]. The cal- 
culation of the second-order perturbed energies involves the first- and second-order 
derivatives of all one- and two-electron integrals. Even for the (sp) GTO bases this 
would lead to two-electron integrals involving d- and f-type Gaussians. Thus, 
using the numerical approach seems to be preferred. It should be pointed out that 
the accuracy of the finite field approach was previously checked [23] against the 
results of the analytic CHF calculations. It was found that the external field values 
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of the order of 0.005-0.01 a.u. give a completely acceptable accuracy of the 
numerically computed polarizabilities. 

The numerical approach to the calculation of molecular polarizabilities requires 
much higher accuracy of the total SCF energy than in the standard SCF calcula- 
tions. Thus the corresponding convergence limits were set up as 10-11_ 10 - 1 o a.u., 
depending on the external field value. This corresponds to the density matrix 
threshold of the order of 10 - 7-10 - 6. 

For each physically different direction of the external electric field the EFV GTO 
basis set, as defined by Eqs. (2) and (3), introduces an additional parameter 2 which 
has to be determined. It was shown [34] that for the EFV GTO's the second-order 
energy is a parabolic function of 2,. Because of the variation bounds [35] for the 
diagonal elements of the tensor-type second-order energy functionals, the optimal 
value of 2, can be simply obtained from the minimum condition for Eu(2)(2,) [34]. 
This method was used throughout this paper. The parabolic fits for the diagonal 
second-order energies E,(~(2 u) were found to be almost exact, independently of the 
chosen set of points. This observation provides a further confidence in the numeri- 
cal accuracy of our results. 

The numerical determination of the optimal value of 2 requires the repeated 
calculation of the field dependent SCF energies, and then the corresponding 
second-order energies, until the minimum of-uuE(2) with respect to 2 u is located. In 
this respect it is worth attention that the parameter 2 u enters the orbital origin 
shifts (2) in a product with the field strength. Thus, for a rough determination of 
the best value of 2 u one can use the same integral files in a series of SCF calculations 
for different but close field values. This technique evidently speeds up the optimiza- 
tion process and was widely used during the calculations reported in this paper. 
Once the approximate value of optimal 2~ was determined, all calculations were 
repeated with higher accuracy. In this way, the optimization process does not 
appear to be very time consuming. Moreover; as shown in the next section, there is 
a good chance for the use of some preselected values of )'-u for the basis sets of a 
given quality. 

The present calculations of the polarizability of a series of diatomic molecules were 
carried out using the EFV GTO basis sets derived from the (sp) sets of Basch and 
Snyder [2]. These in turn were composed of the contracted s-type Gaussians 
(CGTO's) obtained by Whitten [10] in the atomic SCF calculations, and con- 
tracted p-type Gaussians of Huzinaga [37]. For the hydrogen atom the basis set 
consists of 2 CGTO's (4 GTO's, [4/3.1]) and of 10 CGTO's (10 s-type GTO's 
contracted to 4 CGTO's [ 10/3.4.2.1], 5 p-type GTO's for each direction, contracted 
to 2 CGTO's ]-5/4.1]) for the first-row atoms (B-F). Although the basis sets 
recommended by Snyder and Basch [2] represent the so-called 2-~ quality, they 
do not appear to be fully optimized since the s and p subsets were taken from dif- 
ferent sources. 

All calculations reported in this paper have been performed using CDC CYBER 72 
computer. 
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4. Dipole Polarizabilities of Diatomic Molecules 

Because of symmetry of diatomic molecules there are only two independent di- 
agonal components of the polarizability tensor, i.e., the parallel (ell) and the 
perpendicular (e• one, which both define the rotational average e =�89 +2el )  
and the polarizability anisotropy A c~ =eLi-  c~• These two quantities are usually 
derivable from the experimental data, and therefore, our results are given in terms 
of e and Ae. 

The first series of calculations was performed with the field independent basis sets 
using the standard density matrix perturbation theory [28, 30]. For the field inde- 
pendent bases the corresponding finite perturbation calculations were carried out 
simultaneously and a comparison of the second-order energies derived from these 
two approaches led to the estimates of the appropriate external field strength. It 
was found that the computed polarizabilities agree within 10-3 a.u. for the field 
strength of 0.005-0.01 a.u. These estimates of a reliable field strength were very 
helpful in the numerical procedure used for the field dependent bases. 

The results of the field independent basis set calculations as well as the 2-optimized 
polarizabilities obtained using the EFV GTO's derived from the Snyder-Basch 
2-~ sets are shown in Table 1. They are compared with 1) the best CHF values, which 
seemingly represent the corresponding HF limits, 2) a variety of less accurate CHF 
and finite field SCF results, and 3) the available experimental data or accurate 
theoretical results (i.e. including the correlation effects). 

Table 1. Polarizabilities of diatomic molecules from field independent 
( 2 = 0 )  and optimized EFV GTO (2opt) Snyder-Basch (SB) basis set cal- 
culations. A comparison with near-HF, less accurate CHF or finite 
perturbation (FPT)  SCF,  accurate (including correlation), and experi- 
mental results 

Polarizability (in a.u.) a 

Molecule b Calculation c~ Ac~ Ref. 

BH SB (,~ = 0 )  18.01 - 3 . 3 1  This work 
SB (2opt) 21.30 - 1.11 This work 
N e a r - H F  - -  - -  
F P T  SCF  21.07 - 2 . 3 1  [38] c 

Accurate - -  - -  

Exp.  - -  - -  

F H  SB ( 4 = 0 )  1.83 3.28 This work 
SB (2opt) 4.33 1.65 This work 
N e a r - H F  4.74 1.59 [39] 

4.90 1.28 [13] 

C H F  3.18 2.17 [12] 
4.04 1.91 [12] 

F P T  S C F  4.78 1.40 [13] 
Accurate 5.59 1.27 [13] 
Exp. 5.60 1.49 d 
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Table 1, contd. 

Polarizability (in a.u . )  a 

Molecule b Calculation c~ Ac~ Ref.  

N 2 SB ( 2 = 0 )  7.99 8.91 Th i s  w o r k  

SB (,1opl) 10.90 6.23 Th i s  w o r k  

N e a r - H F  - -  - -  

C H F  o r  F P T  S C F  - -  

Accurate - -  - -  

Exp .  11,74 4.67 

11.93 

F 2 SB ( 2 = 0 )  5.14 13.05 Th i s  w o r k  

SB (2opt) 8.03 9.44 Th i s  w o r k  

N e a r - H F  8.30 9.31 [41 ]  
C H F o r  F P T  S C F  - -  

Accurate - -  - -  

Exp .  - -  - -  

C O  SB (,t = 0) 9.36 5.30 This  w o r k  

SB (2opt) 11.34 3.20 Th i s  w o r k  

N e a r - H F  12.40 3.19 [13 ]  

F P T  S C F  cql  = 14.24 [42 ]  

12.29 3.28 [13]  

Accurate I3.13 3.91 [ 1 3 ]  

Exp.  13.34 3.58 e 

B F  SB ( ,1=0)  16.35 - 3 . 3 9  Th i s  w o r k  

SB (2opt) 17.59 - 3 . 8 6  Th i s  w o r k  
N e a r - H F  - -  - -  

F P T  S C F  cq 1 = 15.93 [42]  
Accurate - -  - -  

Exp .  - -  - -  

a 1 a .u .  = 0 . 1 4 8 1 8 4  A 3 =  1.64867.  l0  -41 C 2 m 2 j - 1  [36,  43] .  

b Molecular geometries taken from Ref.  [2 ] .  

~ C G T O  basis set with d-type and p-type polarization functions on B and 
H ,  respectively. 

a Taken from Ref.  [13] .  

e Taken from Ref.  [40] .  

211 

As expected, the field independent basis sets of Snyder and Basch are completely 
insufficient for the calculation of reasonable values of molecular polarizabilities. 
Although the ground state field independent unperturbed energies are usually 
acceptable, the lack of higher GTO's considerably affects the quality of the com- 
puted electric properties. On the expense of the optimization of two additional 
parameters (2fl , 2• the EFV GTO's lead to molecular polarizabilities of  sur- 
prisingly good quality. It should be pointed out that in contrast to the orbital 
exponent optimization for much larger basis sets, as advocated by Lipscomb and 
his coworkers [6], the 2 parameter optimization for much smaller bases is several 
orders of magnitude faster. The fact that the polarizabilities are quadratic func- 
tions of 2 [34] is also a very convenient computational feature of the method. 
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The present results obtained using the EFV GTO basis sets of Snyder and Basch 
are evidently not as good as the best near-HF values of Lipscomb et al. I-6] or 
Werner and Meyer [13]. However, they are usually better than the results Of 
standard CHF calculations with large but non-optimized basis sets. According to 
our present experience the addition of polarization functions with standard orbital 
exponent does not help too much. It follows from Eq. (4) that for the present 
method to work properly, the original GTO basis set must include the valence-shell 
orbitals with rather low orbital exponents. They will introduce indirectly higher 
diffuse orbitals in the presence of the external field. Thus, one can conclude that 
the effectiveness of the EFV GTO perturbation approach requires a rather careful 
selection of the unperturbed SCF wave function. It is important that the tails of the 
SCF orbitals should be properly represented within a given basis set. 

There is one striking feature of our results obtained using EFV GTO's. In contrast 
to the field independent basis set calculations, the optimization of the scale param- 
eters )~11' )L• makes the perturbed basis set more uniform. This optimization con- 
siderably reduces to non-equivalence of the original basis set for the parallel and 
perpendicular field direction. Most frequently the field independent sets led to 
acceptable values of the parallel component of the polarizability tensor. The per- 
pendicular components were usually much worse and this resulted in very bad 
polarizability anisotropies. The 2-optimized EFV GTO values are in a very good 
agreement with the available near-HF results. 

The optimized values of the parameter 2 u are given in Table 2. For most of the 
molecules studied in this paper they are rather close to 0.1. It was also noticed that 
for either much smaller (BF) or much larger (BH) values of 2, the corresponding 
polarizability components do not exhibit a very substantial dependence on this 
parameter. This observation confirms our previous belief 1-23] that for basis sets of 
a given quality one can a priori assume a reasonable numerical value of ,t Some 
possible advantages of this observation will be further considered and illustrated 
in the last section of this paper. 

T a b l e  2. Optimized values of the parameter ). for the parallel 
and perpendicular component of polarizabilities of diatomic 
molecules. Snyder-Basch EFV GTO basis set 

BH FH N z F 2 CO BF 

211 0.165 0.113 0.097 0.075 0.094 0.059 
)'l  0.091 0.129 0.107 0.119 0.098 0.060 

5. Dipole Moments of Diatomic Molecules 

The first-order perturbed energy is a linear function of 2 1,34], and thus, it does not 
lead to any preferred value of this parameter. However, one can use the 2 parameter 
values optimized for the second-order perturbed energy and this procedure hap- 
pened to work unexpectedly well. Since the Hellmann-Feynman theorem is 
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Table 3. Dipole moments of diatomic molecules from field independent (2=0) and 
optimized EFV G T O  (2o~t) Snyde r -Basch  (SB) basis set calculations. A comparison 
with near-HF and experimental data 
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Dipole moment (in a.u.)"' b 

Calculation B H  F H  CO BF 

SB ( 2 = 0 )  ~ 0,806 0,935 0.163 - 0 , 2 1 0  

SB (2opt) ~ 0.613 0.737 0.122 - 0 . 2 2 6  

N e a r - H F  0,682 ~ 0.761 [42] 0.110 [42] - 0 . 2 4 3  [44] 

0.770 [13] 0,098 [13] - 0 , 3 4 7  [42] 
Exp. - -  0.707 [45] - 0.044 f - -  

" 1 a.u. =2.541 77 D=8 .47778 .10  -~~  C m [36, 43]. 
b Polarity of the dipole moment is defined positive for A+B - and H + A  - . 
c This work. Recalculated data of Ref. [2].  

d This work. Computed for the optimized value of 2 rl. 
e HF-limit estimate. Taken from Ref. [46].  
f Taken from Ref. [40].  

violated 2 for the field dependent basis set [35], the EFV GTO's introduce some 
extra terms which account for the external electric field induced polarization of the 
original basis functions. 

As shown by the data of Table 3, there is a quite substantial improvement of the 
dipole moment values due to the field dependence of the basis set. The dipole 
moments computed for the optimized values of 21j are fairly close to the results of 
near-HF calculations. On the other hand, in order to obtain near-HF dipole 
moments by using the Hellmann-Feynman theorem requires a considerable 
extension of the basis set and explicit inclusion of polarization functions. The 
effect of polarization functions is indirectly accounted for when using the EFV 
GTO's. It seems that within the present technique a further improvement of the 
computed dipole moments can be achieved by using slightly better unperturbed 
basis sets but still involving only the valance shell atomic orbitals. Nevertheless, 
as for the quality of the present basis sets the results obtained in this paper seem to 
be completely satisfactory. 

6. General Discussion and Conclusions 

As shown by the present results the explicit perturbation dependence of the basis 
set functions leads to a considerable improvement of the perturbed energy values 
and related molecular electric properties. However, the success of the method is 
mainly due to the optimization of the scale parameters 2. Although for medium size 
basis sets the corresponding optimizations can be performed within rather 

2 The dipole moment is defined by the first-order derivative of the field dependent energy with respect 
to the field strength and in general is not equal to the average value of the dipole moment operator 
computed with field dependent orbitals. For the same reason the polarizabilities have to be computed as 
the corresponding second-order derivatives of energy. 
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reasonable computing times, it would be evidently desirable to have some recom- 
mended values of 2. Moreover, since the proposed scheme should be feasible also 
for larger systems, the use of preselected values of 2 appears to be quite important. 
For large molecules one can hardly request for such a high accuracy of all calcula- 
tions as in the case of diatomics. 

As already mentioned, the optimized values of 2 were quite close to 0.1 for almost 
all of the considered molecules. Moreover, in the case of larger deviations the 2- 
dependence of molecular polarizabilities is rather insignificant, at least as far as 
one does not intend to obtain the best possible results. According to the data of 
Table 2 choosing 2 as equal to 0.1 appears to be rather acceptable. The dipole mo- 
ments and polarizabilities of diatomic molecules computed for 211 = ••  ----- 0.1 are 
collected in Table 4. They are again compared with the results obtained for the 
field independent basis set and with the optimized ones. It follows from this com- 
parison that using a non-optimized but properly selected value of 2 may still result 
in a substantial improvement of the perturbed energies computed with the field 
independent bases. Obviously, the recommended value of the scale parameter 2 
will depend on the size and quality of the unperturbed basis set. However, the 
present results indicate that in principle one can determine the most appropriate 
mean values of 2 for a series of molecules. Another possibility is to use the optimized 
values of)~ selected from atomic calculation. This would make the present method 
even more feasible and applicable for polyatomic molecules. It should be pointed 
out that thus far there is no theoretical method providing reliable estimates of 
molecular polarizabilities for larger systems. It is a rather important feature of the 
EFV GTO approach that it works properly for comparatively small bases. This 

Table 4. Dipole moments  and polarizabilities of  diatomic molecules. Results for field 
independent (2 = 0), non-optimized (2 = 0.1) and optimized (2op t) field dependent basis 
set of  Snyder and Basch 

Molecule 
Basis set BH FH N 2 F 2 CO BF 

Dipole momen t  (in a.u.) a 
SB (2 =0)  0.806 0.935 - -  - -  0.163 -0 ,210  
SB (~.= 0.1) 0.689 0.760 - -  - -  0.119 -0 .237  
SB (2opt) 0.613 0.737 - -  - -  0.122 -0 .226  

Polarizability (in a.u.) b 
SB (2=0)  18.01 1.83 7.99 5.14 9.36 16.35 
SB (2=0.1)  21.04 4.22 10.86 7.91 11.28 17.01 
SB (2ovt) 21.30 4.33 10.90 8.03 11.34 17.59 

Polarizability anisotropy (in a.u.) b 
SB (2=0)  - 3 . 31  3.28 8.91 13.03 5.30 - 3 . 3 9  
SB Q. =0.1)  - 1.83 1.78 6.02 9.41 3.20 - 3.67 
SB (2opt) - 1.11 1.65 6.23 9.44 3.19 - 3 . 8 6  

a See footnotes to Table 2. 
b See footnotes to Table 1. 
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feature seems to define clearly its usefulness and the range of its possible applica- 
tions [47]. 

It is worth attention that a slight improvement of the unperturbed basis sets should 
lead to a further improvement of the computed dipole moments and polariza- 
bilities, though one can hardly compete with the spectacular accuracy of the 
recent results of Werner and Meyer [13]. However, the results obtained for basis 
sets of 11 s-type and 7p-type GTO's [48] indicated that a similar accuracy can be 
obtained also within the EFV GTO approach. The calculations presented in this 
paper were restricted to the SCF HF level. Obviously, one can use the EFV GTO 
basis sets within more advanced techniques as well. For instance, they seem to be 
quite suitable for the calculation of the correlation corrections to molecular electric 
properties. Moreover and rather unexpectedly they appear also to work properly 
in the case of hyperpolarizabilities. Finally, it should be mentioned that techniques 
similar to that exploited in the present paper are also expected to work for other 
perturbation operators [25]. 
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